隨著人工智能、物聯網、大數據等新一代信息技術的蓬勃發展,光伏企業已開始嘗試將其應用于光伏支架中。。未來光伏電站將向自動化、化及智能化發展,而光伏支架系統將成為新一代信息技術在光伏電站項目中的重要應用場景之一,來提高整個電站的發電量,降低投資、運維成本,終增加投資回報率。
近年來中國光伏市場及產業鏈優勢在光伏支架行業得到了充分的發揮。中國光伏支架廠家在滿足國內光伏市場需求的同時,部分企業已經開始布局海外市場,通過內生增長、外部收購等方式,顯著提高了在光伏支架市場的份額。
光伏支架作為光伏電站重要的組成部分,它承載著光伏電站的發電主體。支架的選擇直接影響著光伏組件的運行安全、破損率及建設投資,選擇合適的光伏支架不但能降低工程造價,也會減少后期養護成本。
地面電站-混凝土基礎支架
地面電站混凝土基礎支架多種多樣,根據不用的項目地質情況,可選擇對應的安裝方式,以下主要介紹現澆鋼筋混凝土基礎、獨立及條形混凝土基礎、預制混凝土空心柱基礎等幾種常見的混凝土基礎安裝形式。
根據基礎形式不同,現澆鋼筋混凝土基礎可分為現澆混凝土樁和澆注錨桿。
優點:現澆鋼筋混凝土基礎開挖土方量少,混凝土鋼筋用量小,造價較低、施工速度快。
缺點:現澆鋼筋混凝土基礎施工易受季節和天氣等環境因素限制,施工要求高,一旦做好后無法再調節
柔性支架采用兩固之間張拉預應力鋼絞線的方式,兩固采用鋼性基礎提供反力,可實現10~30 m大間距。這種設計可規避山地起伏、植被較高等不利因素,僅在合適的部位設置基礎點并張拉預應力鋼絞線;同時在水深較深的漁塘也可以在保持水位不動的條件下,實現基礎及柔性支架的施工。
設計中,鋼絞線作為組件安裝的固定支架,計算時需考慮自重,以及風壓、雪壓不同荷載組合下的工況,并進行受力分析。區別于傳統支架的剛性變形要求的嚴格限制( 主梁為L/250,次梁為L/200[1]),柔性支架對變形沒有嚴格限制,目前可根據實際情況采用撓度容許值L/30~L/15,在這種變形條件下不影響鋼絞線的力學性能,因此,柔性支架可以更好地適應大跨度方案,同時可控制好總造價。